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Good climate policy requires the best possible understanding of how climatic change will impact on human lives and livelihoods
in both industrialized and developing counties. Our review of recent contributions to the climate-economics literature assesses 30
existing integrated assessment models in four key areas: the connection between model structure and the type of results pro-
duced; uncertainty in climate outcomes and projection of future damages; equity across time and space; and abatement costs
and the endogeneity of technological change. Differences in treatment of these issues are substantial and directly affect model
results and their implied policy prescriptions. Much can be learned about climate economics and modelling technique from the
best practices in these areas; there is unfortunately no existing model that incorporates the best practices on all or most of the
questions we examine.
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1. Introduction

There is no shortage of models that join climate to

economy with the goal of predicting the impacts

of greenhouse gas emissions in the decades to

come and offering policy advice on when,

where, and by how much to abate emissions.

Some models are designed to offer a detailed por-

trayal of the climate, or the process of economic

growth, or the feedback between these two

systems; others focus on the long-run or the

short-run, economic damages or environmental

damages, carbon-based energy sectors or abate-

ment technology. The best models produce

results that inform and lend clarity to the

climate policy debate. Some models surprisingly

conclude – in direct contradiction of the

urgency expressed in the scientific literature –

that rapid, comprehensive emissions abatement

is both economically unsound and unnecessary.

Some models seem to ignore (and implicitly

endorse the continuation of) gross regional

imbalances of both emissions and income.

Good climate policy requires the best possible

understanding of how climatic change will

impact on human lives and livelihoods, in indus-

trialized countries and in developing countries.

No model gets it all right, but the current body

of climate-economics models and theories con-

tains most of the ingredients for a credible

model of climate and development in an

unequal world.

Unfortunately, many climate-economics

models suffer from a lack of transparency, which

affects both their policy relevance and their credi-

bility. Building a model of the climate and the

economy inevitably involves numerous judge-

ment calls; debatable judgements and untestable

hypotheses turn out to be of great importance

in determining the policy recommendations of

climate-economics models and should be visible

for debate. A good climate-economics model

review article

B *Corresponding author. E-mail: liz.stanton@sei-us.org

CLIMATE AND DEVELOPMENT 1 (2009) 166–184

doi:10.3763/cdev.2009.0015 # 2009 Earthscan ISSN: 1756-5529 (print), 1756-5537 (online) www.earthscanjournals.com



would be transparent enough for policy rel-

evance, but still sophisticated enough to get the

most important characteristics of the climate

and the economy right.

Our review of recent contributions to the

climate-economics literature assesses 30 existing

integrated assessment models (IAMs) in four key

areas:

1. Choice of model structure and the type of

results produced

2. Uncertainty in climate outcomes and the pro-

jection of future damages

3. Equity across time and space

4. Abatement costs and the endogeneity of tech-

nological change

These models were chosen based on their promi-

nence in the climate-economics literature over

the last 10 years. Most of them have both

climate and economic modules, and report

results as damages in money values or as a share

of GDP. A few models discussed here are better

classified as physical impact IAMs, which report

results in terms of physical damages.1 In addition,

a few models treat emissions as exogenous to the

model structure.2

The next four sections of this review evaluate

the body of existing climate economics models

in terms of these key model characteristics, with

illustrative examples of both problems and sol-

utions taken from the literature. The concluding

section summarizes our findings and

their implications for the construction of

climate-economics models.

2. Choice of model structure

This review examines 30 climate-economics

models, all of which have been utilized to make

contributions to the IAM literature within the

last 10 years.3 These models fall into five broad

categories, with some overlap: welfare optimiz-

ation, general equilibrium, partial equilibrium,

simulation, and cost minimization (see

Table 1).4 Each of these structures has its own

strengths and weaknesses and each provides a

different perspective on the decisions that are

necessary for setting climate and development

policy. In essence, each model structure asks a

different question and that question sets the

context for the results it produces.

2.1. Differences in model structures

2.1.1. Welfare optimization models
Welfare optimization models tend to be fairly

simple, which adds to their transparency. The

production of goods and services causes both

emissions and economic output, which can be

used either for consumption or investment.

Greenhouse gas emissions affect the climate,

causing damages that reduce production. Abate-

ment reduces emissions but causes costs that

TABLE 1 Climate-economics models reviewed in this study

Model category Global Regionally disaggregated

Welfare maximization DICE-2008; ENTICE-BR;

DEMETER-1CCS; MIND

RICE-2004; FEEM-RICE; FUND; MERGE; CETA-M; GRAPE;

AIM/Dynamic Global

General equilibrium JAM; IGEM IGSM/EPPA; SMG; WORLDSCAN; ABARE-GTEM; G-CUBED/MSG3;

MS-MRT; AIM; IMACLIM-R; WIAGEM

Partial equilibrium MiniCAM; GIM

Simulation PAGE-2002; ICAM-3; E3MG; GIM

Cost minimization GET-LFL; MIND DNE21þ; MESSAGE-MACRO

Note: Italics indicate that a model falls under more than one category.
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reduce economic output. The models maximize

the discounted present value of welfare (which

grows with consumption, although at an ever-

diminishing rate)5 across all time periods by

choosing how much emissions to abate in each

time period, where abatement costs reduce econ-

omic output (see Figure 1). The process of dis-

counting welfare (or ‘utility’, which is treated as

a synonym for welfare here and in many

models) requires imputing speculative values to

non-market ‘goods’ like ecosystems or human

lives, as well as assigning a current value to

future costs and benefits. Dynamic optimization

models – including all of the welfare optimiz-

ation and cost minimization models reviewed

here – solve for all time periods simultaneously,

as if decisions could be made with perfect

foresight.6

Our review of climate-economics models

includes four global welfare optimization

models: DICE-2007 (Nordhaus, 2008), ENTICE-

BR (Popp, 2006), DEMETER-1CCS (Gerlagh,

2006) and MIND (Edenhofer et al., 2006b), and

seven regionally disaggregated welfare maximiza-

tion models: RICE-2004 (Yang and Nordhaus,

2006), FEEM-RICE (Bosetti et al., 2006), FUND

(Tol, 1999), MERGE (Manne and Richels, 2004),

CETA-M (Peck and Teisberg, 1999), GRAPE

(Kurosawa, 2004) and AIM/Dynamic Global

(Masui et al., 2006).

2.1.2. General equilibrium models
General equilibrium models represent the

economy as a set of linked economic sectors

(markets for labour, capital, energy etc.). These

models are solved by finding a set of prices that

have the effect of ‘clearing’ all markets simul-

taneously (i.e. a set of prices that simultaneously

equate demand and supply in every sector).

General equilibrium models tend to use ‘recursive

dynamics’ – setting prices in each time period

and then using this solution as the beginning

point for the next period (thus assuming no fore-

sight at all). Eleven general equilibrium models

are reviewed in this study: JAM (Gerlagh, 2008),

IGEM (Jorgenson et al., 2004), IGSM/EPPA

(Babiker et al., 2008), SMG (Edmonds et al.,

2004), WORLDSCAN (Lejour et al., 2004),

ABARE-GTEM (Pant, 2007), G-CUBED/MSG3

(McKibbin and Wilcoxen, 1999), MS-MRT

(Bernstein et al., 1999), AIM (Kainuma et al.,

1999), IMACLIM-R (Crassous et al., 2006) and

WIAGEM (Kemfert, 2001).

FIGURE 1 Schematic representation of a welfare optimizing IAM
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In dynamic versions of general equilibrium

theory, multiple equilibria cannot always be

ruled out (Ackerman, 2002).7 When multiple

equilibria are present, general equilibrium

models yield indeterminate results that may

depend on details of the estimation procedure.

For this reason, an assumption of constant or

decreasing returns is often added to their pro-

duction functions, an arbitrary theoretical restric-

tion which is known to assure a single optimal

result (Köhler et al., 2006). Because increasing

returns to scale are important to accurate model-

ling of endogenous technological change, general

equilibrium modellers must skirt between over-

simplifying their representation of the energy

sector and allowing unstable model results.

2.1.3. Partial equilibrium models
Partial equilibrium models – for example,

MiniCAM (Clarke et al., 2007) and GIM (Mendel-

sohn and Williams, 2004) – make use of a subset

of the general equilibrium apparatus, focusing on

a smaller number of economic sectors by holding

prices in other sectors constant; this procedure

also can help to avoid problems with increasing

returns to scale.

2.1.4. Simulation models
Simulation models are based on off-line predic-

tions about future emissions and climate con-

ditions; climate outcomes are determined by an

economic model of production, damages, con-

sumption, investment and abatement costs. A

predetermined set of emissions by time period

dictates the amount of carbon that can be used

in production and model output includes the

cost of abatement and cost of damages. Simu-

lation models cannot, in and of themselves,

answer questions of what policy makers should

do to maximize social welfare or minimize

social costs. Instead, the simulation models

reviewed in this study – PAGE2002 (Hope,

2006), ICAM-3 (Dowlatabadi, 1998), E3MG

(Barker et al., 2006) and GIM (Mendelsohn and

Williams, 2004) – estimate the costs of various

likely future emission paths.

2.1.5. Cost minimization models
Cost minimization models are designed to ident-

ify the most cost-effective solution compatible

with a particular objective. Some cost minimiz-

ation models explicitly include a climate

module, while others abstract from climate by

representing only emissions, and not climatic

change and damages. The four cost minimization

models included in this review – GET-LFL

(Hedenus et al., 2006), MIND (Edenhofer et al.,

2006b), DNE21þ (Sano et al., 2006) and

MESSAGE-MACRO (Rao et al., 2006) – have very

complex ‘bottom-up’ energy supply sectors, mod-

elling technological choices based on detailed

data about specific industries. Three of these

models, excluding GET-LFL, combine a

bottom-up energy supply sector with a

top-down energy end-use sector, modelling tech-

nology from the vantage point of the

macroeconomy.

2.2. Evaluation of model structures

The different types of model structures provide

results that inform climate and development

policy in very different ways. All five categories

have strengths and weaknesses. Many of the best-

known IAMs attempt to find the ‘optimal’ climate

policy, one that maximizes long-term human

welfare. This calculation depends on several

unknowable or controversial quantities, includ-

ing the numerical measurement of human

welfare, the physical magnitude and monetary

value of all current and anticipated climate

damages, and the relative worth of future versus

present benefits.

General equilibrium models can be extremely

complex, combining very detailed climate

models with intricate models of the economy;

yet despite their detail, general equilibrium

models’ reliance on decreasing returns is a

serious limitation to their usefulness in model-

ling endogenous technological change. When

models are overly complex, both transparency

and the plausibility of final results are compro-

mised (this latter point is discussed in more
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detail in section 5 of this article).8 Partial equili-

brium models circumvent the problem of increas-

ing returns, at the cost of a loss of generality. In

some cases, there appears to be a problem of spur-

ious precision in overly elaborated models of the

economy, with, for example, projections of long-

term growth paths for dozens of economic

subsectors.

Simulation models are well suited for repre-

senting uncertain parameters and for developing

IAM results based on well-known scenarios of

future emissions, but their policy usefulness is

limited by a lack of feedback from their economic

damages and abatement modules to emissions.

Finally, cost minimization models address

policy issues without requiring calculations of

human welfare in money terms, but existing

cost minimization models may suffer from the

same tendency towards spurious precision exhib-

ited in some general and partial equilibrium

models.9

3. Uncertain outcomes and projections of
future damages

IAMs inevitably rely on forecasts of future climate

outcomes and the resulting economic damages,

under conditions that are outside the range of

human experience.10 This aspect of the modeling

effort raises two related issues: the treatment of

scientific uncertainty about climate change and

the functional relationships used to project

future damages.

3.1. Scientific uncertainty in climate
outcomes

There are inescapable scientific uncertainties sur-

rounding climate science, for instance, in the

climate sensitivity parameter (the temperature

increase resulting from a doubling of CO2

concentrations). As a result, low-probability,

enormous-cost climate outcomes cannot be

ruled out; the response to these extreme risks is

often central to policy debate and would ideally

be incorporated in economic models of climate

change. Yet we found that most IAMs use

central or average estimates to set parameter

values, typically addressing uncertainty through

a few sensitivity analyses of responses to selected

changes in parameter values.11 Those few models

that express parameter values as distributions

often use truncated distributions that inappropri-

ately exclude or de-emphasize low-probability,

high-cost catastrophes.

Uncertainty is inescapable despite the ever-

expanding body of climate research, because

there are only a limited number of empirical

observations relevant to questions such as esti-

mation of the climate sensitivity parameter. As a

result, the best estimates of the relevant prob-

ability distributions inevitably exhibit ‘fat tails’,

meaning that extreme outcomes are much more

likely than a normal distribution would imply

(Weitzman, 2008). According to Weitzman, an

economist who has raised this problem in

recent debates, IPCC (2007) data imply that an

atmospheric concentration of 550 ppm of CO2-

equivalent would lead to a 98th percentile

chance of 6 8C increase in temperature, a point

at which we ‘are located in the terra incognita

of . . . a planet Earth reconfigured as science

fiction. . . [where] mass species extinctions,

radical alterations of natural environments, and

other extreme outdoor consequences will have

been triggered by a geologically-instantaneous

temperature change that is significantly larger

than what separates us now from past ice ages.’

(Weitzman, 2007: 716).12

In the face of such worst case risks, it is mislead-

ing to look only at the most likely range of con-

ditions. The future will happen only once.

Suppose we knew that there were one hundred

equally likely future scenarios, of which only

one or a few would lead to truly catastrophic

climate change. If we plan well for the most

likely outcomes but instead one that we consider

unlikely comes to pass, will we be comforted by

our parsimonious rationality?

A thorough treatment of uncertainty through

Monte Carlo analysis that varies multiple

unknown parameters is seen in just a few IAMs.

Even then it is difficult to fully explore the
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parameter space, especially given the fat-tailed dis-

tributions that characterize many key climate par-

ameters and their poorly understood interactions.

One of the best-known models that incorpor-

ates Monte Carlo analysis is Hope’s PAGE2002

(Hope, 2006), the model used in the Stern

Review (Stern, 2006). PAGE2002 includes triangu-

lar distributions for 31 uncertain parameters;

Hope’s standard analysis is based on 1000 iter-

ations of the model; as in other multivariate

Monte Carlo analyses, he uses Latin Hypercube

sampling13 to select the uncertain parameters.

This level of sensitivity analyses has a major

impact on results. For the Stern Review, replacing

the Monte Carlo analysis with a deterministic

analysis using the modal parameter values

decreases annual climate damages by an average

of 7.6% of world output (Dietz et al., 2007).

The 31 uncertain parameters in PAGE2002

include two sets of seven regional parameters, but

there are still 19 orthogonal (i.e., presumed unre-

lated or independent) parameters with indepen-

dent distributions to be sampled for each

iteration. This makes it essentially impossible for a

Monte Carlo analysis to explore simultaneous

worst cases in many or most of the parameters. To

have, on average, at least one iteration with

values from the worst quintile for all 19 parameters,

it would be necessary to run the model an unima-

ginable 20 trillion times – a result of the so-called

‘curse of dimensionality’ (Peck and Teisberg,

1995).14 Of course, parameters that are treated as

orthogonal in the model could be interdependent

in the real world. Greater interdependency among

parameters would make seemingly rare extreme

events (based on multiple worst case parameter

values) more likely. But as long as these parameters

are represented as orthogonal in probabilistic IAMs,

a high number of iterations will be necessary to

assure even a single run with extreme values for

multiple parameters. In PAGE2002, with 1000 iter-

ations, it is highly unlikely that there are any results

for which more than a few parameters are assigned

95th percentile or worse values.

Only one other model among those reviewed

has a built-in method of randomizing parameter

values. Carnegie Mellon’s ICAM is a stochastic

simulation model that samples parameter values

from probability distributions for 2000 par-

ameters for an unspecified number of iterations

(Dowlatabadi, 1998). An enormous number of

iterations would be necessary to assure even one

result with low-probability values for any large

subset of these parameters. With any plausible

number of iterations, the ‘curse of dimensional-

ity’ means that the primary choice being made

by the Monte Carlo sampling is the selection of

which parameters happen to have their worst

cases influence the results of the analysis.

Several studies have added a Monte Carlo

analysis onto other IAMs reviewed here. Nord-

haus and Popp (1997) ran a Monte Carlo analysis

on a modification of an earlier version of the

DICE model – called PRICE – using eight uncer-

tain parameters and 625 iterations, with five poss-

ible values for each of three parameters and a

variation on Latin Hypercube sampling for the

rest. Nordhaus also has run a Monte Carlo simu-

lation using DICE-2007 (Nordhaus, 2008) with

eight parameters and 100 iterations. Kypreos

(2008) added five stochastic parameters to

MERGE and runs 2500 iterations; Peck and Teis-

berg (1995) added one stochastic parameter to

CETA-R with an unreported number of iterations;

and Scott and co-authors (1999) added 15 sto-

chastic parameters to MiniCAM with an unre-

ported number of iterations. Webster et al.

(1996) take a different approach to modelling

uncertainty in ISGM/EPPA by using a collocation

method that approximates the model’s response

as a polynomial function of the uncertain

parameters.

None of the models reviewed here assumes fat-

tailed distributions and reliably samples the low-

probability tails. Therefore, none of the models

provides adequate representation of worst case

extreme outcomes – which are unfortunately

not unlikely enough to ignore.

3.2. Projecting future damages

Most IAMs have two avenues of communication

between their climate model and their economic

Inside integrated assessment models 171

CLIMATE AND DEVELOPMENT



model: a damage function and an abatement

function (see Figure 1). The damage function

translates the climate model’s output of temp-

erature – and sometimes other climate charac-

teristics, such as sea-level rise – into changes to

the economy, positive or negative.

Many models assume a simple form for this

relationship between temperature and economic

damage, such that damages rise in proportion to a

power of temperature change:

D ¼ aTb
ð1Þ

where D is the value of damages (in dollars or as a

percent of output), T is the difference in tempera-

ture from that of an earlier period and the expo-

nent b determines the shape or steepness of the

curve. Damages are calculated for multiple time

periods, often at intervals of 5 or 10 years, over

the course of as long as 600 years; annual

damages for any given year are calculated by

interpolation between adjacent estimates.15

Implicitly, the steepness of the damage function

at higher temperatures reflects the probability of

catastrophe – a characteristic that can have a far

more profound impact on model results than

small income losses at low temperatures.

Our literature review revealed three concerns

with damage functions in existing IAMs: the

choice of exponents and other parameters for

many damage functions are either arbitrary or

under-explained; the form of the damage function

constrains models’ ability to portray discontinu-

ities; and damages are commonly represented in

terms of losses to income, not capital.16

3.2.1. Arbitrary exponent
DICE, like a number of other models, assumes

that the exponent in the damage function is 2 –

that is, damages are a quadratic function of

temperature change.17 The DICE-2007 damage

function was assumed to be a quadratic function

of temperature change with no damages at 0 8C
temperature increase, and damages equal to

1.8% of gross world output at 2.5 8C; this

implies, for example, that only 10.2% of world

output is lost to climate damages at 6 8C.

(Nordhaus, 2007a).18 Numerous subjective judge-

ments, based on fragmentary evidence at best, are

incorporated in the point estimate of 1.8%

damages at 2.5 8C (much of the calculation is

unchanged from Nordhaus and Boyer (2000),

which provides a detailed description). The

assumption of a quadratic dependence of

damage on temperature rise is even less grounded

in any empirical evidence.

Our review of the literature uncovered no

rationale, whether empirical or theoretical, for

adopting a quadratic form for the damage func-

tion – although the practice is endemic in

IAMs, especially in those that optimize

welfare.19 PAGE2002 (Hope, 2006) uses a

damage function calibrated to match DICE, but

makes the exponent an uncertain (Monte Carlo)

parameter, with minimum, most likely and

maximum values of 1.0, 1.3 and 3.0, respectively.

Sensitivity analyses of the Stern Review (Stern,

2006) results, which were based on PAGE2002,

show that fixing the exponent at 3 – assuming

damages are a cubic function of temperature –

increases average annual damages across the 200

year forecast horizon (above the Stern Review’s

business-as-usual baseline) by a remarkable 23%

of world output (Dietz et al., 2007). Thus the

equally arbitrary assumption that damages are a

cubic, rather than quadratic, function of temp-

erature would have a large effect on IAM results,

and consequently on their policy implications.

3.2.2. Continuity
Damage functions are often defined to be con-

tinuous across the entire range of temperature

rise, even though it is far from certain that

climate change will in fact be gradual and con-

tinuous. Several climate feedback processes

point to the possibility of an abrupt discontinuity

at some uncertain temperature threshold or

thresholds. However, only a few IAMs instead

model damages as discontinuous, with tempera-

ture thresholds at which damages jump to much

worse, catastrophic outcomes.

Two leading models incorporate some treat-

ment of catastrophic change, while maintaining
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their continuous, deterministic damage func-

tions. MERGE (Manne and Richels, 2004)

assumes all incomes fall to zero when the

change in temperature reaches 17.7 8C – which

is the implication of the quadratic damage func-

tion in MERGE, fit to its assumption that rich

countries would be willing to give up 2% of

output to avoid 2.5 8C of temperature rise. This

formulation deduces an implicit level of cata-

strophic temperature increase, but maintains

the damage function’s continuity. DICE-2007

(Nordhaus, 2007b) models catastrophe in the

form of a specified (moderately large) loss of

income, which is multiplied by a probability of

occurrence (an increasing function of tempera-

ture), to produce an expected value of cata-

strophic losses. This expected value is combined

with estimates of non-catastrophic losses, to

create the DICE damage function; that is, it is

included in the quadratic damage function dis-

cussed above.

In the PAGE2002 model (Hope, 2006), the

probability of a catastrophe increases as tempera-

ture rises above some specified temperature

threshold. The threshold at which catastrophe

first becomes possible, the rate at which the prob-

ability increases as temperature rises above the

threshold, and the magnitude of the catastrophe

when it occurs, are all Monte Carlo parameters

with ranges of possible values.

3.2.3. Income damages
Damages are commonly modelled in IAMs as

losses to economic output, or gross domestic

product (GDP), and therefore losses to income

(GDP per capita) or consumption, leaving the

productive capacity of the economy (the capital

stock) and the level of productivity undiminished

for future use. For example, non-catastrophic

damages in the DICE-2007 model (Nordhaus,

2007a) include impacts to agriculture, ‘other vul-

nerable markets’, coastal property from sea-level

rise, health, time-use and ‘human settlements

and natural ecosystems’, all of which are sub-

tracted directly from total economic output. In

reality, many of these categories are reductions

to the capital stock and not directly to income,

especially coastal property and human settle-

ments damages. Others have multi-period

effects on the marginal productivity of capital or

labour, that is, the ability of technology to trans-

form capital and labour into income; damages

to agricultural resources and health are good

examples of longer-term changes to productivity.

When damages are subtracted from output, the

implication is that these are one time costs that

are taken from current consumption and invest-

ment, with no effects on capital, production or

consumption in the next period – an unrealistic

assumption even for the richest countries, as

attested by the ongoing struggle to rebuild New

Orleans infrastructure, still incomplete three

years after Hurricane Katrina. FUND (Tol, 1999)

is unusual among welfare optimizing IAMs in

that it models damages as one-time reductions

to both consumption and investment, where

damages have lingering ‘memory’ effects deter-

mined by the rate of change of temperature

increase.

4. Equity across time and space

Most climate economic models implicitly assume

that little attention is needed to the problems of

equity across time and space. In the area of inter-

temporal choice, most models have high dis-

count rates that inflate the importance of the

short-term costs of abatement relative to the

long-term benefits of averted climate damage.

Together with the common assumption that the

world will grow richer over time, discounting

gives greater weight to earlier, poorer generations

relative to later, wealthier generations. Equity

between regions of the world, in the present or

at any moment in time, is intentionally excluded

from most IAMs, even those that explicitly treat

the regional distribution of impacts.

4.1. Equity across time

The impacts of climate change, and of green-

house gas mitigation, will stretch centuries or
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even millennia into our future. Models that

estimate welfare, income or costs over many

years must somehow value gains and losses

from different time periods. There are two

leading approaches.

The early work of Ramsey (Ramsey, 1928) pro-

vides the basis for the ‘prescriptive’ approach, in

which there are two components of the discount

rate: the rate of pure time preference, or how

human society feels about costs and benefits to

future generations, regardless of the resources and

opportunities that may exist in the future; and a

wealth-based component – an elasticity applied

to the rate of growth of real consumption – that

reflects the diminishing marginal utility of

income20 over time as society becomes richer.

Algebraically, the discount rate, r(t), combines

these two elements: it is the rate of pure time pre-

ference, r, plus the product of the elasticity of

marginal utility with respect to consumption

per capita, h, and the growth rate of income or

consumption per capita, g(t).

rðtÞ ¼ rþ hg(t) ð2Þ

Some models use the alternative, ‘descriptive’

approach to discounting, where the market rate

of interest or capital growth is taken to represent

the discount rate.21 These analyses typically

either set the discount rate at 5%, or at an unspe-

cified market rate of interest (e.g. Charles River

Associates’ MS-MRT (Bernstein et al., 1999), a

general equilibrium model).

Because climate change is a long-term problem

involving long time lags, climate-economics

models are extremely sensitive to relatively

small changes in the assumed discount rate.

There are long-standing debates on the subject

which are summarized well in the Stern Review

(Stern, 2006). Remarkably, the model descrip-

tions for many IAMs do not state the discount

rate or methodology they use, even when discuss-

ing discounting.

Choices about the discount rate inevitably

reflect value judgements made by modellers.

The selection of a value for the pure rate of time

preference is a problem of ethics, not economic

theory or scientific fact. Pure time preference of

zero would imply that (holding real incomes con-

stant) benefits and costs to future generations are

just as important as the gains and losses that we

experience today. The higher the rate of pure

time preference, the less we value harm to

future generations from climate change and the

less we value the future benefits of current

actions to avert climate change. Pure rates of

time preference found in this literature review

range from 0.1% in the Stern Review’s

PAGE2002 analysis (Hope, 2006) to 3% in

RICE-2004 (Yang and Nordhaus, 2006).

Only a few model descriptions directly state

their elasticity of marginal utility of consump-

tion, although the use of this elasticity, implying

that marginal utility declines as consumption

grows, is common to many IAMs. In DICE-2007

(Nordhaus, 2008), the elasticity of the marginal

utility of consumption is set at 2, and the dis-

count rate declines from 4.7% in 2005 down to

3.5% in 2395. In the Stern Review’s version of

PAGE2002 (Hope, 2006), the elasticity of the mar-

ginal utility of consumption is set at 1, and the

discount rate averages 1.4%.

A higher elasticity of marginal utility of con-

sumption reflects a greater emphasis on equity:

the larger the elasticity, the greater the value to

social welfare of an increase in consumption

for a poorer person, versus a richer one.22

However, in a global model – lacking regional

disaggregation – there is only one utility function

for the world as a whole. The practical upshot of

this is that the diminishing marginal utility of

income is applicable only in comparisons across

time (e.g. the present generation versus the

future) and not in comparisons across different

regions or socio-economic characteristics (e.g.

Africa versus north America today, or at any

given point in time).

The four cost minimization models included in

this literature review – GET-LFL (Hedenus et al.,

2006), MIND (Edenhofer et al., 2006b), DNE21þ

(Sano et al., 2006) and MESSAGE-MACRO (Rao

et al., 2006) – all report a 5% discount rate.23

The ethical issues involved in discounting abate-

ment costs are somewhat more straightforward
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than those involved in discounting welfare.

Abatement technologies have well-defined mon-

etary prices, and thus are more firmly situated

within the theoretical framework for which dis-

counting was developed. Many abatement costs

would occur in the next few decades – over

spans of time which could fit within the lifetime

and personal decisions of a single individual. To

pay for $1000 worth of abatement 50 years from

now, for example, one can invest $230 today in

a low-risk bond with 3% annual interest. On the

other hand, welfare optimization models must

inevitably assign subjective, contestable values

to the losses and gains to future generations that

are difficult to monetize, such as the loss of

human life or the destruction of ecosystems. No

investment today can adequately compensate

for a loss of life or irreversible environmental

damage; and even if an agreeable valuation were

established, there is no existing or easily ima-

gined mechanism for compensating victims of

climate change several hundred years in the

future.

4.2. Equity across space

IAMs that optimize welfare for the world as a

whole – modelled as one aggregate region –

maximize the result of a single utility function

by making abatement and investment choices

that determine the emissions of greenhouse

gases; emissions then determine climate out-

comes and damages, one of the inputs into

utility. This utility function is a diminishing func-

tion of per capita consumption. The IAM chooses

emission levels for all time periods simul-

taneously – when more emissions are allowed,

future periods lose consumption to climate

damages; when emissions are lowered, abatement

costs decrease current consumption.

The model’s optimizing protocol (or more pic-

turesquely, the putative social planner) balances

damages against abatement costs with the goal

of maximizing utility – not income or consump-

tion. Because utility is modelled with diminish-

ing returns to consumption, the value to society

of a given cost or benefit depends on the per

capita income level at the time when it occurs.

A change to income in a rich time period is

given a lower weight than an identical change

to income in a poor time period (even if the rate

of pure time preference is zero). If, as usual, per

capita income and consumption are projected

to keep growing, the future will be richer than

the present.24 Under that assumption, the richer

future matters less, in comparison to the rela-

tively poorer present.

Regional welfare optimizing IAMs apply the

same logic, but with separate utility functions

for each region. The model is solved by choosing

abatement levels that maximize the sum of utility

in all regions. Seemingly innocuous, the disaggre-

gation of global IAMs into component regions

raises a gnarly problem for modellers: with identi-

cal, diminishing marginal returns to income in

every region, the model could increase utility by

moving income towards the poorest regions. This

could be done by reallocating responsibility for

regional damage and abatement costs, or inducing

transfers between regions for the purpose of foster-

ing technical change, or funding adaptation, or

purchasing emission allowances or any other

channel available in the model for interregional

transfers.

Modellers have typically taken this tendency

toward equalization of income as evidence of the

need for a technical fix. In order to model climate

economics without any distracting rush toward

global equality, many models apply the little-

known technique of ‘Negishi weights’ (Negishi,

1972). Stripped of its complexity, the Negishi

procedure assigns larger weight to the welfare of

richer regions, thereby eliminating the global

welfare gain from income redistribution.25

In more detail, the technical fix involves estab-

lishing a set of weights for the regional utility

functions. The model is run first with no trade

or financial transfers between regions; the

regional pattern of per capita income and mar-

ginal product of capital from that autarkic

(no-trade) run is then used to set the so-called

Negishi weights, for each time period, that equal-

ize the marginal product of capital26 across all
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regions. Since the marginal product of capital is

higher in lower-income regions, the Negishi

weights give greater importance to utility in

higher-income areas. In a second iteration, the

normal climate-economics model, with transfers

possible between regions, is restored, and the

Negishi weights are hard-wired into the model’s

utility function. The result, according to the

model descriptions, is that the models act as if

the marginal product of capital were equal in all

regions and, therefore, no transfers are necessary

to assuage the redistributive imperative of dimin-

ishing marginal returns.27 The (usually) unspo-

ken implication is that the models are acting as

if human welfare is more valuable in the richer

parts of the world.

Describing the use of Negishi weights as a mere

technical fix obscures a fundamental assumption

about equity. Negishi weights cause models to

maximize welfare as if every region already had

the same income per capita – suppressing the

obvious reality of vastly different regional levels

of welfare, which the models would otherwise

highlight and seek to alleviate (Keller et al.,

2003; Manne, 1999; Nordhaus and Yang, 1996).

In IAMs that do not optimize welfare, Negishi

weights are not used and interregional effects

can, therefore, remain more transparent. For

example, in PAGE2002 (Hope, 2006) – a simu-

lation model that reports regional estimates –

no radical equalization of per capita income

across regions occurs, but utility is not being

maximized, and the simulations do not claim to

represent optimal policy outcomes.28

By including discounting over time as well as

Negishi weights, welfare optimizing IAMs accept

the diminishing marginal utility of income for

intergenerational choices, but reject the same

principle in the contemporary, interregional

context. Some justification is required if different

rules are to be applied in optimizing welfare

across space than those used when optimizing

welfare across time. At the very least, a

climate-economics model’s ethical implications

should be transparent to the end users of its ana-

lyses. While ethical concerns surrounding dis-

counting have achieved some attention in

policy circles, the highly technical but ethically

crucial Negishi weights are virtually unknown

outside the rarified habitat of modelers and

welfare economists. The Negishi procedure con-

ceals one strong, controversial assumption

about welfare maximization, namely that exist-

ing regional inequalities are not legitimate

grounds for shifting costs to wealthier regions,

but inequalities across time are legitimate

grounds for shifting costs to wealthier gener-

ations. Other assumptions, needless to say,

could be considered.

5. Abatement costs and the endogeneity of
technological change

The analysis of abatement costs and technologi-

cal change is crucial to any projection of future

climate policies. An unrealistic picture of fixed,

predictable technological change, independent

of public policy, is often assumed in IAMs – as is

the treatment of investment in abatement as a

pure loss. These choices are mathematically con-

venient, but prevent analysis of policies to

promote and accelerate the creation of new, low-

carbon technologies. This oversimplification sup-

ports the questionable conclusion that the best

policy is to avoid immediate, proactive abate-

ment, and wait for automatic technical progress

to reduce future abatement costs.

5.1. Choices in modelling abatement
technology

There have been rapid advances in recent years in

the area of modelling endogenous technological

change. A review by the Innovation Modeling

Comparison Project (Edenhofer et al., 2006a;

Grubb et al., 2006; Köhler et al., 2006) offers a

thorough description of the most recent attempts

to model endogeneity and induced technological

innovation – an effort that we will not attempt to

reproduce here. Instead, this section briefly dis-

cusses three choices that all IAM modellers must

make with regard to their representation of abate-

ment technology: how to model increasing
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returns; how much technological detail to model;

and how to model macroeconomic feedback.

Many models, especially general equilibrium

models, assume technologies are characterized

by decreasing returns to scale (meaning that dou-

bling all inputs yields less than twice as much

output), a provision which ensures that there is

only one, unique equilibrium result. The assump-

tion of decreasing returns may be realistic for

resource-based industries such as agriculture or

mining, but it is clearly inappropriate to many

new, knowledge-based technologies – and

indeed, it is inappropriate to many branches of

old as well as new manufacturing, where bigger

is better for efficiency, up to a point. Some indus-

tries exhibit not only increasing returns in pro-

duction, but also ‘network economies’ in

consumption – the more people that are using a

communications network or a computer operat-

ing system, the more valuable that network or

operating system is to the next user.

The problem for modelling is that increasing

returns and network economies introduce path

dependence and multiple equilibria into the set

of possible solutions. Small events and early

policy choices may decide which of the possible

paths or output mixes the model will identify as

‘the solution’. An inferior computer operating

system, energy technology or other choice may

become ‘locked in’ – the established standard is

so widely used and so low-priced because it is pro-

duced on such a large scale, that there is no way

for individual market choices to lead to a switch

to a technologically superior alternative. Model-

ling increasing returns, path dependence and

multiple equilibria can bring IAMs closer to a rea-

listic portrayal of the structure and nature of

emissions abatement and economic develop-

ment options, but at the expense of making

models more difficult to construct and model

results more difficult to interpret.

Knowledge spillovers are also related to

increasing returns. Some of the returns to

research and development are externalities, that

is, they impact on third parties – other compa-

nies, industries or countries. Because of the

public goods character of knowledge, its returns

cannot be completely appropriated by private

investors. Without public incentives for research

and development, private firms will tend to

under-invest in knowledge, with the result that

the total amount of research and development

that occurs is less than would be socially

optimal. Increasing returns are modelled either

as a stock of knowledge capital that becomes an

argument in the production function, or as learn-

ing curves that lower technological costs as

cumulative investments in physical capital or

research and development grow.

A second choice that IAM modellers must

make is how much technological detail to

include. This encompasses not only whether to

model increasing returns but also how many

regions, industries, fuels, abatement technologies

or end uses to include in a model. A more detailed

technology sector can improve model accuracy

but there are limits to the returns from adding

detail – at some point, data requirements, spur-

ious precision and loss of transparency begin to

detract from a model’s usefulness. On the other

hand, a failure to model sufficient technological

diversity can skew model results. Abatement

options such as renewable energy resources,

energy efficiency technologies and behavioural

shifts serve to limit abatement costs; models

without adequate range of abatement options

can exaggerate the cost of abatement and there-

fore recommend less abatement effort than a

more complete model would.

The final modelling choice is how to portray

macroeconomic feedback from abatement to

economic productivity. A common approach is

to treat abatement costs as a pure loss of

income, a practice that is challenged by new

models of endogenous technological change,

but still employed in a number of IAMs, such as

DICE-2007 (Nordhaus, 2008). Two concerns

seem of particular importance. Modelling abate-

ment costs as a dead-weight loss implies that

there are no ‘good costs’ – that all money spent

on abatement is giving up something valuable

and thereby diminishing human welfare. But

many costs do not fit this pattern: money spent

wisely can provide jobs or otherwise raise
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income, and can build newer, more efficient

capital. A related issue is the decision to model

abatement costs as losses to income. Abatement

costs more closely resemble additions to capital,

rather than subtractions from income. (A similar

argument can be made regarding many kinds of

damage costs: see the earlier section on projecting

future damages.)

5.2. Cost minimization models

Many of the IAMs making the most successful

inroads into modelling endogenous technologi-

cal change are cost minimization models. All

four of the cost minimization models reviewed

in this study – GET-FL (Hedenus et al., 2006),

DNE21þ (Sano et al., 2006), MIND (Edenhofer

et al., 2006b) and MESSAGE-MACRO (Rao et al.,

2006) – include learning curves for specific tech-

nologies and a detailed rendering of alternative

abatement technologies.

GET-FL, DNE21þ, MIND and MESSAGE-

MACRO are all energy systems models that

include greenhouse gas emissions but not

climate change damages. These models include

various carbon-free abatement technologies,

carbon capture and storage and spillovers

within clusters of technologies. GET-FL has learn-

ing curves for energy conversion and investment

costs. DNE21þ has learning curves for several

kinds of renewable energy sources and a capital

structure for renewables that is organized in vin-

tages. Both MIND and MESSAGE-MACRO

combine an energy system model with a macro-

economic model. MIND has learning curves for

renewable energy and resource extraction

research; development investments in labour

productivity; trade-offs between different types

of research and development investment; and a

vintaged capital structure for renewables and

carbon capture and storage technologies.

MESSAGE-MACRO models interdependencies

from resource extraction, imports and exports,

conversion, transport and distribution to

end-use services; declining costs in extraction

and production; and learning curves for several

energy technologies (Edenhofer et al., 2006a;

Köhler et al., 2006).

These energy system models demonstrate the

potential for representing induced innovation

and endogeneity in technological change. Unfor-

tunately, the very fact of their incredible detail of

energy resources, technologies and end uses leads

to a separate problem of unmanageably large and

effectively opaque results in the most complex

IAMs. (For example, the RITE Institute’s DNE21þ

models historical vintages, eight primary energy

sources and four end-use energy sectors, along

with five carbon capture and storage methods,

several energy conversion technologies and separ-

ate learning curves for technologies like wind,

photovoltaics and fuel cells.) A model is con-

structed at the level of detail achievable from

present day energy sector data, providing accuracy

in the base year calculations. Then the model is

extended into the future based on unknowable

and untestable projections, running the risk of

turning historical accuracy into spurious precision

in future forecasts. A high level of specificity about

the future of the energy sector cannot be sustained

over the number of years or decades necessary to

analyse the slow, but inexorable, advance of

climate change.

6. Conclusions

The best-known climate-economics models

weigh the costs of allowing climate change to

continue against the costs of stopping or

slowing it, and thus recommend a ‘best’ course

of action: one that, given the assumptions of

the model, would cause the least harm. The

results of such models are, of course, only as

good as their underlying structures and para-

meter values.

Analysis of climate change, in economics as

well as in science, inescapably involves extrapol-

ation into the future. To understand and

respond to the expected changes, it is essential

to forecast what will happen at greenhouse gas

concentrations and temperature levels that are

outside the range of human experience, under
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regimes of technological progress and insti-

tutional evolution that have not yet even been

envisioned. While some progress has been made

toward a consensus about climate science model-

ling, there is much less agreement about the econ-

omic and societal laws and patterns that will

govern future development.

IAMs seek to represent both the impacts of

changing temperature, sea level and weather on

human livelihoods, and the effects of public

policy decisions and economic growth on green-

house gas emissions. IAMs strive not only to

predict future economic conditions but also to

portray how we value the lives, livelihoods and

natural ecosystems of future generations – how

human society feels about those who will

inherit that future. The results of economic

models depend on theories about future econ-

omic growth and technological change, and on

ethical and political judgments.

Model results are driven by conjectures and

assumptions that do not rest on empirical data

and often cannot be tested against data until

after the fact. To the extent that climate policy

relies on the recommendations of IAMs, it is

built on what looks like a ‘black box’ to all but a

handful of researchers. Better informed climate

policy decisions might be possible if the effects

of controversial economic assumptions and

judgements were visible and were subjected to

sensitivity analyses.

Our review of the literature has led to several

concrete lessons for model development:

B Many value-laden technical assumptions are

crucial to policy implications and should be

visible for debate. Existing models often bury

assumptions deep in computer code and para-

meter choices, discouraging discussion.

B Crucial scientific uncertainties – such as the

value of the climate sensitivity parameter and

the threshold for irreversible catastrophe –

must be addressed in the model structure.

Most IAMs use central or average estimates,

and thereby ignore catastrophic risk.

B Modelling climate economics requires fore-

casts of damages at temperatures outside

historical experience; there is no reason to

assume a simple quadratic (or other low-order

polynomial) damage function.

B Today’s actions affect the climate and

economy of future generations, thus linking

current and future welfare. Many models

effectively break this link by using high

discount rates, inflating the importance of

near-term abatement costs while trivializing

long-term benefits of mitigation.

B Climate choices occur in an unequal world

and inevitably affect opportunities for devel-

opment. Most regionally disaggregated

models use a technical device (‘Negishi

welfare weights’) that freezes the current

income distribution, constraining models to

ignore questions of interregional equality.

B Measures to induce or accelerate technologi-

cal change will be crucial for a successful

climate policy; a realistic model must allow

endogenous technical change and increasing

returns. Many IAMs assume decreasing

returns and/or exogenous technological pro-

gress and treat abatement costs as an unpro-

ductive loss of income, not an investment in

energy-conserving capital.

Climate-economics models have improved over

the years, including expanded treatment of

externalities, technological innovation and

regional disaggregation. But there is still tremen-

dous scope for further improvement, including

more extensive sensitivity analyses and more rig-

orous examination of risk and uncertainty. Fun-

damentally subjective judgements, especially

those that embody deeply value laden assump-

tions, can be made more explicit.

What difference would it make to change these

features of climate economics modelling? In the

absence of a better model, we can only speculate

about the results. Our guess is that the modifi-

cations we have proposed would make a climate

economics model more consistent with the

broad outlines of climate science models, portray-

ing the growing seriousness of the problem, the

ominous risks of catastrophe and the need for

immediate action.
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Notes

1. See the Goodess et al. (2003) model classification

system, in which AIM and ISGM are both physical

impact IAMs.

2. Examples include E3MG and several simulation

models.

3. Two climate-economics modelling projects pub-

lished as special issues of the Energy Journal were

indispensible in preparing this review. The first

was organized by the Stanford Energy Modeling

Forum (Weyant and Hill 1999) and the second by

the Innovation Modeling Comparison Project

(Edenhofer et al., 2006a; Grubb et al., 2006;

Köhler et al., 2006). For definitions of IAMs and

accounts of their development over time see

Goodess et al. (2003), Courtois (2004), Risbey

et al. (1996), Rotmans and Dowlatabadi (1998).

4. A sixth category, macroeconomic models, could be

added to this list, although the only example of a

pure macroeconomic model being used for

climate analysis may be the Oxford Global Macro-

economic and Energy Model (Cooper et al., 1999).

Publically available documentation for this model

is scarce and somewhat cryptic, perhaps because it

was developed by a private consulting firm. Macro-

economic models analyse unemployment,

financial markets, international capital flows,

and monetary policy (or at least some subset of

these) (Weyant and Hill, 1999). Three general

equilibrium or cost minimization models with

macroeconomic features are included in this lit-

erature review: G-CUBED/MSG3, MIND and

MESSAGE-MACRO.

5. In these models, consumption’s returns to welfare

are always positive but diminish as we grow weal-

thier. Formally, the first derivative of welfare is

always positive and the second is always negative.

A popular, though not universal, choice defines

individual welfare, arbitrarily, as the logarithm of

per capita consumption or income.

6. For a critique of IAMs that focuses on the shortcom-

ings of welfare-optimization models, see Courtois

(2004).

7. See also DeCanio (2003).

8. On transparency of value-laden assumptions in

IAMs see Schneider (1997), Morgan and Dowlata-

badi (1996), Risbey et al. (1996), DeCanio (2003),

Rotmans and Dowlatabadi (1998) and Parson

(1996). On transparency of IAMs code and software

see Ha-Duong (2001). For a discussion of how

overly complex models can falsely convey model

accuracy see Rotmans and Dowlatabadi (1998).

9. Several discussions of how best to assess IAMs exist

in the literature, including Morgan and Dowlata-

badi (1996), Risbey et al. (1996), and Rotmans and

Dowlatabadi (1998).

10. Numerous reviews of IAMs critique their oversim-

plification of the physical climate model, the lack

of clear standards in interdisciplinary work and

the degree to which they lag behind current scien-

tific findings. See Courtois (2004), Hall and Behl

(2006), Parson (1996), Risbey et al. (1996) and

Rotmans and Dowlatabadi (1998).

11. Morgan and Dowlatabadi (1996) stress the impor-

tance of portraying uncertainty in their ‘hallmarks

of good IAMs’. For other reviews and general discus-

sions of uncertainty in IAMs see Scott et al. (1999)

Morgan et al. (1999), Warren et al. (2006),

Rotmans and Dowlatabadi (1998) and Heal and

Kristrom (2002).

12. In more recent work, Weitzman has suggested that

climate science implies even greater risks at

the 95th–99th percentile (Weitzman, 2008). Of

course, his argument does not depend on an exact

estimate of these risks; the point is that accuracy

is unattainable and the risks do not have an

obvious upper bound, yet effective policy responses

must be informed by those low-probability extreme

events.

13. Latin Hypercube sampling, a technical procedure

widely used in Monte Carlo analyses, ensures that

the selected sets of parameters are equally likely

to come from all regions of the relevant parameter

space.

14. If the uncertain parameters were all truly indepen-

dent of each other, such combinations of multiple

worst case values would be extraordinarily unlikely.

The danger is that the uncertain parameters, about

which our knowledge is limited, may not be

independent.

15. For discussions of the problems arising from long

time scales in IAMs see Parson (1996) and Morgan

et al. (1999).

16. For a review of damages functions in DICE,

RICE, FUND, MERGE, and PAGE see Warren et al.

(2006).

17. DICE-2007 actually uses a slightly more compli-

cated equation which is equivalent to our equation

(1), with the exponent b ¼ 2, for small damages.

18. See Ackerman et al. (2008) for a more detailed cri-

tique of the DICE-2007 damage function.
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19. Risbeyetal. (1996) refer to this practice as the ‘whole-

sale uncritical adoption of archetype models’.

20. Diminishing marginal utility of income is the ubi-

quitous assumption in neo-classical economics

that each new dollar of income brings a little less

satisfaction than the last dollar.

21. The terminology of descriptive and prescriptive

approaches was introduced and explained in

Arrow et al. (1996).

22. If the elasticity of the marginal utility of consump-

tion is a constant h, as in equation (2), and per

capita consumption is c, then utility ¼ c(12h)/

(1 2 h), except when h ¼ 1, when utility ¼ ln

c. See the Stern Review (Stern, 2006), technical

annex to Chapter 2 on discounting, or other stan-

dard works on the subject.

23. The MIND model (Edenhofer et al., 2006b), which

combines cost minimization with welfare maximi-

zation, uses a pure rate of time preference of 1% and

a total discount rate of 5%.

24. Many models make the implicit assumption that

resource availability is infinite and do not explicitly

consider resource limitations or resource use

efficiency.

25. For examples of how this procedure is discussed in

the climate-economics literature see Kypreos

(2005: 2723), Peck and Teisberg (1998: 3–4) and

Yang and Nordhaus (2006: 731–738).

26. The marginal product of capital is the increase in

output resulting from the last unit of capital

added to the economy. It tends to be higher when

capital is scarce, that is, in poorer regions.

27. For an example of the Negishi weights method-

ology see Yang and Nordhaus (2006) or Manne

and Richels (2004).

28. Earlier versions of PAGE2002, in fact, applied

equity weights that boost the relative importance

of outcomes in developing countries; the Stern

Review modeling effort dropped the equity

weights in favour of a more explicit discussion of

regional inequality (Chris Hope, personal com-

munication, 2008).
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